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Abstract. Code generators based on template expansion techniques are easier
to build than purely deductive systems but do not guarantee the same level of
assurance: instead of providing “correctness-by-construction”, the correctness of
the generated code depends on the correctness of the generator itself. We present
an alternative assurance approach, in which the generator is extended to enable
Hoare-style safety proofs for each individual generated program. The proofs en-
sure that the generated code does not “go wrong”, i.e., does not violate certain
conditions during its execution.
The crucial step in this approach is to extend the generator in such way that it pro-
duces all required annotations (i.e., pre-/postconditions and loop invariants) with-
out compromising the assurance provided by the subsequent verification phase.
This is achieved by embedding annotation templates into the code templates,
which are then instantiated in parallel by the generator. This is feasible because
the structure of the generated code and the possible safety properties are known
when the generator is developed. It does not compromise the provided assurance
because the annotations only serve as auxiliary lemmas and errors in the annota-
tion templates ultimately lead to unprovable safety obligations.
We have implemented this approach and integrated it into the AUTOBAYES and
AUTOFILTER program generators. We have then used it to fully automatically
prove that code generated by the two systems satisfies both language-specific
properties such as array-bounds safety or proper variable initialization-before-use
and domain-specific properties such as vector normalization, matrix symmetry, or
correct sensor input usage.

1 Introduction

Program generation has a significant potential to improve the software development
process and promises many benefits, including higher productivity, reduced turn-around
times, increased portability, and elimination of manual coding errors. However, the key
to realizing these benefits is of course generator correctness—nothing is gained from
replacing manual coding errors with automatic coding errors. Moreover, following the
motto “trust but verify” there should be some more explicit evidence for the correctness
of the generated code than just trust in the correctness of the generator itself, or as has
been argued, “rigorous arguments must be provided to demonstrate the correctness of
the translator and/or the generated code” [WH99].

Several approaches have been explored to ensure and demonstrate correctness. In
deductive program synthesis [SW+94,Kre98], the program is generated as byproduct of
an existence proof for a theorem derived from the specification; other approaches based



on refinement [Smi90,BG+98] or translation verification [WB96] can offer similar
“correct-by-construction” guarantees. However, code generators based on these ideas
are difficult to build and to scale up, and have not found widespread application. Code
generators that are based on template expansion techniques are easier to build but can
currently not guarantee the same level of assurance. Traditionally, they are only vali-
dated by testing, which requires significant effort that can quickly become excessive, in
particular for applications in high-assurance domains like aerospace. For example, the
aerospace software development standard DO-178B [RTC92] mandates that the imple-
mentation of the generator is tested to the same level of criticality the generated code
requires.

We are developing and implementing an alternative approach that is not based on
the verification or validation of the generator but instead focuses on the safety of each
individual generated program. Our core idea is to extend the generator itself such that
it produces all logical annotations (i.e., pre-/postconditions and loop invariants) that are
required for formal safety proofs in a Hoare-style framework. These proofs certify that
the generated code does not “go wrong”, i.e., does not violate certain conditions during
its execution. The crucial aspect of the approach is to ensure that errors in the original
code generator or in the certification extension do not compromise the assurance pro-
vided by the subsequent verification phase, or, in other words, that the proofs are correct
and actually prove the safety properties claimed.

We have integrated this approach into the program generators AUTOBAYES [FS03]
and AUTOFILTER [WS04]. We have then used it to fully automatically prove that code
generated by the two systems satisfies both language-specific properties such as array-
bounds safety or proper variable initialization-before-use and domain-specific proper-
ties such as vector normalization, matrix symmetry, or correct sensor input usage.

This paper summarizes our previous work on certifiable program generation. More
details can be found in the cited references.

2 AUTOBAYES and AUTOFILTER

AUTOBAYES and AUTOFILTER are two domain-specific program generators that fol-
low a schema-based approach to code generation. This extends the “plain” template
expansion techniques by adding semantic constraints to the templates. AUTOBAYES

[FS03] works in the scientific data analysis domain and generates parameter learning
programs, while AUTOFILTER [WS04] generates state estimation code based on vari-
ants of the Kalman filter algorithm. Both systems share a large common core (e.g.,
symbolic subsystem, certification subsystem, and target code generators) but have their
individual schema libraries. They are implemented in SWI-Prolog and together com-
prise approximately 100 kLoC. Both systems work fully automatically and can generate
code of considerable size and complexity (approximately 1500 LoC with deeply nested
loops) within a few seconds.

Schemas. A schema comprises a parameterized code fragment (i.e., template) to-
gether with a set of constraints that determine whether the schema is applicable and
how the parameters can be instantiated. The constraints are formulated as conditions on
a problem model, which allows the problem structure to directly guide the application



of the schemas and thus constrains the search space. The parameters are instantiated
by the code generator, either directly on schema application or by recursive calls with
a modified problem. The schemas are organized hierarchically into a schema library
which further constrains the search space. Schemas represent both fundamental build-
ing blocks (i.e., algorithms) and solution methods (i.e., transformations) of the domain;
they are thus similar to the lemmas used in purely deductive systems but they can con-
tain explicit calls to a meta-programming kernel in order to construct code.

Symbolic Computations. Symbolic computations are used in AUTOBAYES and
AUTOFILTER to support schema instantiation and code optimization. The core of the
symbolic subsystem is a small rewrite engine which supports associative-commutative
operators and explicit contexts. It thus allows rules as for example x/x →C ` x 6=0 1
where →C ` x6=0 means “rewrites to, provided x 6= 0 can be proven from the current
context C.” Expression simplification and symbolic differentiation are implemented
on top of the rewrite engine. The basic rules are straightforward; however, vectors
and matrices require careful formalizations, and some rules also require explicit meta-
programming, e.g., when bound variables are involved.

Intermediate Code. The code fragments in the schemas are formulated in an im-
perative intermediate language. This is essentially a “sanitized” variant of C (i.e., no
pointers, no side effects in expressions etc.); however, it also contains a number of
domain-specific constructs like vector/matrix operations, finite sums, and convergence-
loops.

Optimization. Straightforward schema instantiation and composition produces sub-
optimal code; worse, many of the suboptimalities cannot be removed completely using
a separate, after-the-fact optimization phase. Schemas can thus explicitly trigger large-
scale optimizations which take into account information from the code generation pro-
cess. For example, all numeric routines restructure the goal expression using code mo-
tion, common sub-expression elimination, and memoization; since the schemas know
the goal variables, no dataflow analysis is required to identify invariant sub-expressions,
and code can be moved around aggressively, even across procedure borders.

Target Code Generation. In a final step, the optimized intermediate code is trans-
lated into code tailored for a specific run-time environment. We currently have target
code generators for the Octave and Matlab environments, and can also produce stan-
dalone Ada, C, and Modula-2 code. Each target code generator employs one rewrite
system to eliminate the constructs of the intermediate language which are not supported
by the target environment (“desugaring”) and a second rewrite system to clean up the
desugared code; most rules are shared between the different code generators.

Problem Specifications. Schema-based program generation does not necessarily
require a logical conjecture as starting point for a proof. The Code derivation can there-
fore begin with a specification in a more application-oriented domain-specific language.
Our specification languages combine some target language constructs (e.g., declara-
tions) with established scientific and engineering notations (e.g., differential equations).
This allows a concise and fully declarative formulation of the problem together with
some details of the desired configuration and architecture of the code to be gener-
ated. AUTOBAYES uses a specification language that is very close to the generative



statistical models used in Bayesian statistics, while AUTOFILTER uses a more control
engineering-oriented notation to formulate process models.

3 Certification Architecture

Our certification approach generally follows similar lines as proof carrying code (PCC)
[Nec97]; in particular, the role of the extended code generator as producer of annotated
target code is very similar to that of a certifying compiler [NL98,CL+00] in the PCC
approach. However, there are also some key differences. First, since we target code gen-
eration instead of compilation, we work on the source code level instead of the object
code level. On the positive side, since some safety properties can be formulated more
naturally (e.g., initialization-before-use) or only (e.g., loop variable restrictions) on the
source code level, this allows us to formulate and support more safety properties rel-
evant to application domains. In particular, high-level domain-specific properties such
as matrix symmetry or frame safety [LPR01] are inherently defined on the source code
level. On the negative side, these domain-specific properties make the annotation gen-
eration (see Section 5) more difficult. Fortunately, unlike a general purpose compiler,
a domain-specific code generator embodies enough domain knowledge to provide the
information required. Second, the proofs are not tightly integrated into the code and are
currently not even distributed together with the code; hence, our approach provides cer-
tifiable rather than certifying program generation. However, this is not a fundamental
deficit and could be changed relatively straightforwardly, if necessary. Third, we apply
a different prover technology and our architecture allows choosing from different off-
the-shelf fully automated theorem provers (ATP) for first-order logic instead of relying
on a customized higher-order system. However, the ATP can essentially be considered
as a black box.
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Fig. 1. Certifiable program generation: System architecture



Figure 1 shows the overall architecture of a certifiable program generation system.
At its core is the original code generator which is extended for certification purposes
and complemented by a verification condition generator (VCG), a simplifier, an ATP,
a proof checker, and a domain theory. These components and their interactions are de-
scribed in the rest of this paper and in more detail in [WSF02,DF03,DFS05]. As in
the PCC approach, the architecture distinguishes between trusted and untrusted compo-
nents, shown in Figure 1 in red (dark grey) and blue (light grey), respectively. Trusted
components must be correct because any errors in them can compromise the assurance
provided by the overall system. Untrusted components, on the other hand, are not cru-
cial to the assurance because their results are double-checked by at least one trusted
component. In particular, the assurance provided by a certifiable program generation
system does not depend on the correctness of its two largest components: the original
code generator (including the certification extensions), and the ATP; instead, we need
only trust the safety policy, the VCG, the domain theory, and the proof checker.

4 Source-Level Safety Certification

The purpose of safety certification is to demonstrate that the code does not violate cer-
tain conditions during its execution. A safety property is an exact characterization of
these conditions based on the operational semantics of the language. It is formally de-
fined as an entailment relation that formalizes when the evaluation of an expression and
the execution of a statement are safe in a given environment. A safety policy is a set
of proof rules and auxiliary definitions which are designed to show that safe programs
satisfy the safety property of interest. The intention is that a safety policy enforces a
particular safety property and strictly speaking an off-line proof is required to show
the policy correct with respect to the property [DF03]. Since the calculus is sound and
complete (modulo the completeness of the logic underlying the formulation of the anno-
tations), it does in particular prevent us from proving unsafe programs safe. The proof
rules can be formalized concisely using the usual Hoare triples P {c} Q, i.e., if the
condition P holds before and the command c terminates, then Q holds afterwards (see
[Mit96] for more information about Hoare-style program proofs).

For each notion of safety which is of interest a safety property and the correspond-
ing safety policy need be formulated. The formulation of the safety property is usu-
ally straightforward, and the proof rules for any given safety policy can fortunately be
constructed systematically, by instantiating a generic rule set that is derived from the
standard rules of the Hoare-calculus [DF03]. The basic idea is to extend the standard
environment of program variables with a “safety environment” of “safety” or “shadow”
variables which record safety information related to the corresponding program vari-
able. The rules are then responsible for maintaining this environment and producing the
appropriate safety obligations.

Figure 2 shows the rules instantiated for the relatively simple case of memory safety.
Here the safety environment consists of shadow variables xhi that are used to record the
dimension of the corresponding arrays x. The only statement that affects the value of
a shadow variable is thus the declaration of an array (cf. the adecl-rule). However, all
rules also need to produce the appropriate safety formulas safemem(e) for all immediate



subexpressions e of the statements. Since the safety property defines that an expression
is safe if all access to array variables are within the bounds given by the corresponding
shadow variables, safemem(x[e]) for example simply translates to 1 ≤ e ≤ xhi.

(decl)
Q {var x} Q

(adecl)
Q[n/xhi] {var x[n]} Q

(skip)
Q {skip} Q

(assign)
Q[e/x] ∧ safemem(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x] ∧ safemem(x[e1]) ∧ safemem(e2) {x[e1] := e2} Q

(if )
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safemem(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safemem(b) {while b inv I do c} Q

(for)
P {c} I[i + 1/i] I ∧ e1 ≤ i ≤ e2 ⇒ P I[e2 + 1/i] ⇒ Q

I[e1/i] ∧ safemem(e1) ∧ safemem(e2) {for i := e1 to e2 inv I do c} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q

(assert)
P ⇒ P ′ P {c} Q′ Q′ ⇒ Q

P {pre P ′ c post Q′} Q

(cons)
P ⇒ P ′ P ′ {c} Q′ Q′ ⇒ Q

P {c} Q

Fig. 2. Proof rules for memory safety

We have defined five different safety properties and implemented the corresponding
safety policies. Array-bounds safety (array) requires each access to an array element
to be within the specified upper and lower bounds of the array. Variable initialization-
before-use (init) ensures that each variable or individual array element has been explic-
itly assigned a value before it is used. Both are typical examples of language-specific
properties. Matrix symmetry (symm) requires certain two-dimensional arrays to be sym-
metric. Sensor input usage (inuse) is a variation of the general init-property which guar-
antees that each sensor reading passed as an input to the Kalman filter algorithm is
actually used during the computation of the output estimate. These two examples are
specific to the Kalman filter domain. The final example (norm) ensures that certain one-



dimensional arrays represent normalized vectors, i.e., that their contents add up to one;
it is specific to the data analysis domain.

The VCG directly implements the generic rules and, starting with the initial post-
condition true, applies them to the statements in the usual backwards style, emitting
the constructed safety obligations along the way. Since it is part of the trusted compo-
nent base, it has been designed to be “correct-by-inspection”, i.e., deliberately simple.
Hence, it does not implement any optimizations or even apply any simplifications. Con-
sequently, the generated obligations tend to be large and must be simplified separately
before they can be tackled by the ATP. The resulting proofs can be sent to a proof
checker to ensure that the ATP produced a valid proof.

5 Annotation Generation

As Figure 2 shows, the proof rules require logical annotations, in particular loop invari-
ants. The construction of these annotations is usually the limiting factor for the practical
application of Hoare-style verification tools, e.g., ESC [FL+02]. Fortunately, the anno-
tations are untrusted. They are never directly used as safety obligations themselves but
only serve as lemmas for use by the trusted VCG. Due to the soundness of the calcu-
lus, an error in an annotation can, at worst, lead to the construction of an invalid safety
obligation. As an example, consider the while-rule. If the constructed invariant I is too
strong (e.g., I ≡ false), then it is easy to show that the postcondition Q follows but
impossible to show that the precondition P constructed from the loop body c holds. If
the invariant is too weak (e.g., I ≡ true), then it will generally be impossible to show
that either the precondition or the postcondition follows, unless of course the program
is trivially safe. Similar arguments hold for the other rules as well. Even compatible
“parallel” errors in the generation of the code and the annotations will not compromise
the assurance. In the worst case, the generated code will be functionally wrong but if
the proof succeeds, it will still execute safely. This role of the annotations thus allows us
to extend the untrusted code generator to produce both code and annotations, without
compromising the assurance provided by the safety proofs.

The central question though is how this can be achieved. Obviously, there is no free
lunch, and ultimately the annotations have to be provided by the developer. This can
be done in the form of annotation templates that are integrated into the schemas and
instantiated in parallel with the code templates by the generator. The basic process to
extend the generator comprises the following four steps:

1. Analyze the generated code and identify the location and structure of the required
annotations.

2. For each location, identify the schemas that produced the respective code fragment.
3. For each affected schema, generalize the respective annotations to appropriate meta-

annotations (e.g., replace program variables by meta variables).
4. For each meta-annotation, formulate an appropriate annotation template or meta-

program that generates the annotation at the time of schema application, and inte-
grate it into the schema.

Like building the generator in the first place, this an expensive manual process. It has
to be repeated until all schemas are covered, and started again for each new safety



property. Moreover, the annotations are cross-cutting concerns, not only on the level of
the generated programs, but also on the level of the program generator. This can make
the extension of the generator quite hard work. However, it remains feasible because
the overall structure and the purpose of the generated code as well as the possible safety
properties are already known when the generator is extended.

· · ·
var a[n] ; var b[m]
· · ·

/*A : */ for i := 1 to n
inv ∀j · 1 ≤ j < i ⇒ 1 ≤ a[j] ≤ m
do a[i] := f(i) ;
post ∀i · 1 ≤ i ≤ n ⇒ 1 ≤ a[i] ≤ m
· · ·

/*B : */ for i := 1 to n
inv 1 ≤ a[i] ≤ m
do b[a[i]] := g(i) ;
· · ·

Fig. 3. Code fragment with annotations

The code fragment shown in Figure 3, which is taken in simplified form from code
generated by AUTOBAYES, illustrates how the process works. It uses the loop at A to
initialize the array a with an unspecified expression f(i), and then uses a in the second
loop at B to write the also unspecified expression g(i) indirectly into b. In order to prove
these array accesses safe, the invariant needs to restrict the contents of the a-elements
to the valid index range of b, i.e., a[i] has to be between 1 and m.

The question is now how and where to construct this invariant. However, when we
write the schema that generates the first loop, we also already know that the a-elements
will be used to index into b. This is part of the domain knowledge that is required to build
the original code generator. In a first step, we thus extend this schema by an annotation
template or meta-program that constructs the (local) invariant and postcondition given
at A. The annotation template can focus on the locally relevant information, without
needing to describe all the global information that may later be necessary for the proofs
because the schemas are not combined arbitrarily but only along the hierarchy given in
the schema library.

Unfortunately, these local annotations are in general still insufficient to prove the
postcondition at the end of larger code fragments. In our example, we still need to get
the information about the values in a into the loop invariant at B. Since this limited
information transport is a recurrent problem, we do not pass around the constructed
annotations during generation, but rely on a separate annotation propagation phase af-
ter the code has been constructed. The propagation algorithm can be seen as a very
crude approximation of a strongest postcondition predicate transformer. It pushes the
generated local annotations forward along the edges of the syntax tree as long as the



information can be guaranteed to remain unchanged. Because the generator produces
code with restricted aliasing only, the test for which statements influence which anno-
tations can easily be accomplished without a full static analysis by maintaining a set of
modified variables during propagation.

The propagation phase also adds a few default annotations as it traverses the code,
for example bounds on the loop variables. These could in principle also be reconstructed
by the VCG, but that would complicated the implementation of the trusted VCG. The
fully annotated and propagated code is then used by the VCG.

6 Experimental Results

We have used the approach described here to certify different safety properties for code
generated by AUTOBAYES and AUTOFILTER. Table 1 summarizes the relevant num-
bers for four representative examples. The first two examples are AUTOFILTER spec-
ifications. ds1 is taken from the attitude control system of NASA’s Deep Space One
mission [WS04]. iss specifies a component in a simulation environment for the Space
Shuttle docking procedure at the International Space Station. In both cases, the gen-
erated code is based on Kalman filter algorithms, which make extensive use of matrix
operations. The other two examples are AUTOBAYES specifications which are part of a
more comprehensive analysis [FH+03] of planetary nebula images taken by the Hubble
Space Telescope. segm describes an image segmentation problem for which an iterative
numerical clustering algorithm is synthesized. Finally, gauss fits an image against a
two-dimensional Gaussian curve. This requires a multivariate optimization which is im-
plemented by the Nelder-Mead simplex method. The code generated for these two ex-
amples has a substantially different structure from the state estimation examples. First,
it contains many deeply nested loops, and some of them do not have a fixed (i.e., known
at generation time) number of iterations but are executed until a dynamically calculated
error value becomes small enough. In contrast, in the Kalman filter code, all loops are
executed a fixed number of times. Second, all array accesses are element by element
and there are no operations on entire matrices (e.g., matrix multiplication).

For each of the examples, Table 1 lists the size |S | of the specification, the size |P |
of the generated program (including comments but without annotations), the applicable
safety policies, the sizes |A | and |A∗ | of the generated and propagated annotations, and
finally the numbers N and Nfail of generated and invalid safety obligations as well as the
generation and proof times Tgen and Tproof. All times are wall-clock times rounded to the
next second and were obtained on a 2.4GHz standard Linux PC with 4GB memory. The
generation times also include generation, simplification, and file output of the safety
obligations; code generation alone accounts for approximately 90% of the times listed
under the array safety policy. The proof times are based on using the E-Setheo [MI+97]
prover which was able to discharge all valid obligations; they do not include the time
spent on the invalid obligations. A more detailed analysis of the results achieved with
different ATPs is available in [DFS05].

The table shows that the generated annotations can amount to a significant frac-
tion of the generated code and, after propagation, can even dominate it. It also shows
substantial differences in the size of the annotations required for the different safety



Example |S | |P | Policy |A | |A∗ | N Nfail Tgen Tproof

ds1 48 431 array 0 19 1 - 6 1
init 87 444 74 - 11 84
inuse 61 413 21 1 8 202
symm 75 261 865 - 71 794

iss 97 755 array 0 19 4 - 25 3
init 88 458 71 - 40 88
inuse 60 361 1 1 32 -
symm 87 274 480 - 66 510

segm 17 517 array 0 53 1 - 3 1
init 171 1090 121 - 8 109
norm 195 247 14 - 4 12

gauss 18 1039 array 20 505 20 - 21 16
init 118 1615 316 - 54 259

Table 1. Results of safety certification

properties; in particular, it also shows that array-bounds safety (which is the core prop-
erty guaranteed by PCC) requires almost no local annotations and can often be certified
with only the default annotations added by the propagator. The number of generated
safety obligations also varies substantially for the different safety properties. However,
the proof effort remains tractable, and in most of the cases the ATP was able to success-
fully discharge all obligations in less than 15 minutes wall clock time.

In general, of course, an obligation can fail to be proven for a number of reasons.
First, there may of course be an actual safety violation in the code. This is the case
for the two invalid obligations that are produced for the sensor input usage property.
The deeper reason for this, however, is not a flaw in the code generator but a sloppy
specification that declares a vector that is not completely used. Second, the (generated)
annotations may be insufficient or wrong. Annotation errors can come from any part of
the schema, or from the propagation phase: an annotation might not be propagated far
enough, or it might be propagated out of scope. Third, the theorem prover may time-out,
either due to the size and complexity of the obligation, or due to an incomplete domain
theory. For certification purposes, however, it is important to distinguish between unsafe
programs and any other reasons for failure, and in the case of genuine safety violations,
to locate the unsafe parts of the program.

7 Conclusions

We have described an extension to the AUTOBAYES and AUTOFILTER program gener-
ators which can automatically ensure important safety properties for the generated code.
The core idea of our approach is to extend the generator itself in such way that it pro-
duces all logical annotations (i.e., pre-/postconditions and loop invariants) required for
Hoare-style safety proofs without compromising the assurance provided by the proofs.
In principle, the prover can fail to prove some valid proof obligations and thus raise false



alarms but in practice we were able to design the system such that all valid obligations
could be discharged fully automatically.

Our approach can be seen as “PCC for code generators” because it enables safety
proofs for the generated code. We believe that it can directly be applied to code gener-
ators based on template expansion techniques in general, not only to our own systems.
However, we believe also that our techniques could as well be used in a response to the
recently announced Grand Challenge of developing a verifying compiler. We further
believe that in principle any verification technique that can be guided by an appropri-
ate form of annotations can be combined successfully with a certifiable code generator,
not just the Hoare-style certification using the VCG/ATP combination described here.
Another interesting research direction would thus be to combine annotation generation
with other techniques, for example static analysis.

For future work, we plan to extend the system in two main areas, in addition to
continually increasing the systems’ generative power with more algorithmic schemas,
more specification features, and more control over the derivation.

First, we are developing a more declarative and explicit modeling style. Much of the
domain knowledge used by the system in deriving code is currently implicit; by making
it explicit this can be used to (among other things) facilitate traceability between the
code and it derivation in the generated documentation.

Second, we continue to extend the certification power of the system with more poli-
cies, more automation, and an integrated approach to documentation generation. In par-
ticular, we are now developing an “annotation inference” technique which addresses
many of the difficulties of annotation generation. This will also enable us to easily ap-
ply our certification techniques to code generators other than our own.

Acknowledgements. Mike Whalen and Johann Schumann contributed substantially to the devel-
opment and implementation of the certifiable program generation approach.
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